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1 INTRODUCTION
Improvements in microscopy have allowed researchers to acquire
increasingly large amounts of cell image data, requiring human or
automated systems for processing and screening. Using microscopy
results to identify not just cells but cell types would be useful for
scientific purposes and save dramatically on cost. An automated
cell segmentation system would allow for live-cell imaging while
reducing hands-on data labelling tasks.
One issue with cell datasets is cell heteroginy; many existing

cell segmentation datasets feature just one type of cell. To this end,
the EVICAN dataset [10] provides segmentation annotations for
30 cell types across 4600 images. We use this dataset to train a
deep convolutional model with a U-Net architecture. Our model
achieves impressive cell segmentation performance across many
types of cells. We then demonstrate the performance of the model
by comparing it against traditional segmentation methods.

2 BACKGROUND
Cell segmentation is the task of splitting a microscopic image into
individual instances of cells [6]. As cellular morphology is an impor-
tant indicator of a cell’s physiological state, well-segmented images
which capture biologically relevant morphological information can
be extremely valuable in image-based cellular research [6]. With
cell segmentation, scientists are able to analyze a wide range of
biological features such as cell count, type, division, shape, etc. They
can also quickly evaluate changes in cell features over time and
in response to different experimental conditions. Therefore, cell
segmentation is regarded as not only a fundamental step in many
biomedical studies but also a driving force in drug discovery, diag-
nostics, and other important fields of biology, pharmacology, and
personalized medicine [6].
Many methods have been developed for cell segmentation. All

existing methods can be roughly categorized into traditional (i.e.
non-deep-learning) and deep learningmethods. Traditional methods
include threshold-based approaches such as Otsu thresholding [7],
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as well as approaches based on feature extraction, level-set and
graph-cut [11].
In recent years, as computational power of machines increased,

deep learning methods have outperformed traditional methods in
many prediction tasks. In the domain of image prediction, deep neu-
ral networks use successive convolutional layers to extract meaning-
ful image information. Stacking these convolutional layers, which
transform the input using convolution with a learnable and small-
size kernel, leads to a Convolutional Neural Network (CNN). CNNs
has been widely used and shown huge successes in image process-
ing, including classification [5], detection [8], and most relevant to
our task, segmentation [9] [2]. For example, the approach Mask R-
CNN developed by[2] first proposes regions of interest (ROIs), then
predicts masks over each ROI. Another prominent CNN network -
U-Net - outputs the segmentation masks directly, and specifically
targets biomedical image segmentation tasks [9]. Similar approach-
ing utilizing deep neural networks have lead to important advances
across the biocomputational domain [1] [4].

3 METHODS
We explore both traditional and deep-learning methods on the EVI-
CAN cell segmentation dataset.

3.1 Traditional
For the traditional method, we mainly use Otsu thresholding [7].
Before obtaining the threshold, we preprocess the image with a
high-pass filter and normalization. We’ve found Gaussian high-pass
filter generates better results.
The aim of the Otsu’s thresholding method is to find the opti-

mal threshold value where the sum of foreground and background
spreads is at its minimum [7]. It achieves this goal by iterating
through all the possible threshold values and calculating a measure
of spread for the pixel levels either fall in foreground or background
[7].

3.2 Deep Learning
3.2.1 Data preparation. There are five steps in our data preprocess-
ing pipeline.

• Step 1: Downsampling data. We downsample the images with
blurred background in both the train and val folders and
their corresponding masks to 224 × 224, and save them as
our training (3714 images) and validation data (115 images)
respectively.

• Step 2: Constructing a customized dataset: We use PyTorch’s
Dataset() class as a base class to construct a customized
dataset called EvicanDataset where we define additional data
preprocessing in the __getitem__() function (Step 4 and 5).
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Fig. 1. U-Net model architecture using a contracting path to capture local
context and a symmetric expanding path for precise localization [9].

• Step 3: Normalizing data. For additional data preprocessing,
we first normalize both the raw cell images and the segmen-
tation masks, since their pixel values vary and don’t have
a fixed range. In particular, we normalize the pixel values
of the raw cell images to the [0, 1] range. We also turn the
masks into binary masks by normalizing their pixel values to
be either 0 or 1.

• Step 4: Additional preprocessing of images into trainable ten-
sors: In order to fit our images into a PyTorch model for
training, there are two additional steps: converting images
into tensors, and permuting their dimensions. First, we con-
vert the image into tensors. Second, we transpose/permute
the dimensions of the data with torch.Tensor.permute(2, 0, 1)
so that the color channel of the image is indicated by the
first dimension instead of the last one. We perform this step
because this is the conventional tensor representation of an
image.

• Step 5: Data augmentation: Finally, we perform on-the-fly
data augmentation with 4 different random transformations
during training. Since we only have 3714 raw images, which
is far from enough for training a deep learning model for this
challenging segmentation task with 30 different cell lines, we
employ data augmentation and expand our training dataset
to 4 times larger with 4 transformations. Additionally, we
make our data augmentation on-the-fly to optimize for space
usage.

3.2.2 Network architecture. We choose the deep neural network
architecture U-net, as it has shown state-of-the-art performance
on segmentation tasks [9].The U-net is an encoder-decoder net-
work which can take an image as its input, downsample and then
upsample it to output an equal-sized image [9].
In Figure 1, we can see the U-net’s architecture can be repre-

sented by a "U", and it consists of two paths. The left part (also
called a contracting path) of the “U" is downsamping the image
with a few convolutional and max pooling layers to get a more
compact feature representation of the image. This path can be
represented as: conv_layer1 -> conv_layer2 -> max_pooling

-> dropout(optional) . More specifically, according to the U-net
paper [9], this path consists of “the repeated application of two
3x3 convolution, each followed by a rectified linear unit (ReLU)
and a 2x2 max pooling operation with stride 2 for downsampling."
The right part (or, the expansive path) then unsamples the image
via the following layers: conv_2d_transpose -> concatenate ->
conv_layer1 -> conv_layer2.
In details, every step in this path consists of an upsampling of

the feature map followed by a 2x2 convolution, a concatenation
with the cropped feature map from the contracting path, and two
3x3 convolutions. Each step is followed by the nonlinear unit ReLU.
Finally, a 1x1 convolution serves to map each 64-component feature
vector to the target number of classes at the last layer.

The reason why this U-net architecture works well on image
segmentation problems, where we need to convert feature map into
a vector and reconstruct an image from this vector, is that U-net
utilizes the learned feature mapping of an image and use it (instead
of a vector) to convert back to an image. This technique of using the
feature map would preserve the structural integrity of the image
and help reduce distortion.

3.2.3 Training procedure. We describe the major components of
our training procedure below:

• data loader: we use PyTorch’s DataLoader class for loading
data with batches and multiple threads. We activate random
shuffling for the training data.

• on-the-fly data augmentation: we perform 4 image transfor-
mationswith the transform classes from torchvision.transforms,
including horizontal flip, horizontal and vertical translation
by 10%, rotating by [-10, 10] degrees, and scaling up and down
by 10%, on the fly during each training epoch.

• loss function: we use nn.BCEWithLogitsLoss() for calculating
our loss from output logits, since our groundtruth masks are
binary.

• optimizer: we use the Adam() optimizer with an initial learn-
ing rate of 1e-4, and we decrease the learning rate to 5e-6 at
the end.

• checkpoints saving: we save the state dictionary of the model
with the best validation metrics, including mean Average
Precision (mAP) and Jaccard Index (discussed below).

3.2.4 Evaluation. To draw fair comparisons between our method
and the EVICAN MaskRCNN baseline, we use two metrics mAP
and Jaccard Index to evaluate our deep learning method, as these
are the metrics reported in their paper [10].

• mAP: The average precision metric is commonly used to eval-
uate a model’s performance on object detection. The EVICAN
paper counted predicted instances co-localized with corre-
sponding ground truth instances as true positives when they
have an intersection over union (IoU) scores above a certain
threshold [10]. They calculated AP at IoU thresholds above
0.5 (AP0.5) and 0.75 (AP0.75) and report the average over all
test images [10]. However, since the output of our model con-
tains only segmentation masks but not bounding boxes, we
can’t obtain the IoU of each distance. Therefore, we calculate
AP differently by counting each pixel as a true positive if it
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Difficulty Easy Medium Difficult Average
Otsu thresholding 0.2055 0.2055 0.2090 0.2067
U-net 0.8224 0.8224 0.8185 0.8211

Table 1. The evaluation mAP scores of traditional (Otsu thresholding) and
deep learning (U-net) method across various difficulties of evaluation data.

Difficulty Easy Medium Difficult Average
Otsu thresholding 0.1498 0.1498 0.1523 0.1506
U-net 0.4232 0.4232 0.4126 0.4197

Table 2. The evaluation Jaccard Index values of traditional (Otsu thresh-
olding) and deep learning (U-net) method across various difficulties of
evaluation data.

Fig. 2. Sample predictions from U-net and Otsu thresholding on a cell image.
The predicted mask from U-net closely matches the ground truth mask,
whereas the one from Otsu thresholding is much less accurate.

matches the corresponding pixel value in the ground truth
mask. Specifically, we use the AP implementation in torch-
metrics and obtain the mAP by take the average across all
evaluation images. Note that while it might not be meaning-
ful to directly compare our mAP score to the one reported in
the EVICAN paper (i.e. 61.6%), we can draw fair comparison
between the mAP scores of the traditional and deep learning
method.

• Jaccard Index: The Jaccard Index, or Jaccard similarity coef-
ficient, is a statistic used in understanding the similarities
between sample sets [3]. Themeasurement is formally defined
as the size of the intersection divided by the size of the union
of the sample sets [3], and the mathematical representation
of the index is written as:

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | =

|𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 |

4 RESULT AND ANALYSIS
In Table 1, we see the performance of our deep learning model and
Otsu thresholding as evalauted by the mAP score on the dataset
evaluation partition across varying difficulties of segmentation. The
U-net achieves a significantly higher mAP in all categories. Table
2 similarly shows performance of our deep learning model and
Otsu thresholding as evalauted by the Jaccard Index on the same
evaluation partitions. Again, the U-net achieves significantly higher
Jaccard Index in all vategories.We also notice that themAP score and
Jaccard Index which decreases as segmentation difficulty increases,
as expected.

Figure 2 shows an example of the segmentation performed by
our deep learning model and Otsu thresholding. We create this
mask from the deep learning model output by applying a Sigmoid
function to the output, then using a 0.5 threshold to separate posi-
tive from negative predictions. We observe that qualitatively, the
segmentation mask predicted by the U-Net is significantly better
than the segmentation mask predicted by Otsu thresholding. The
predicted mask from the U-net closely approximates the ground
truth mask, capturing an accurate mask for each cell with little to
no noise. Conversely, the predicted mask from Otsu thresholding
mostly captures the outlines of the cells as well as a small amount of
their contents. The Otsu thresholding mask also contains significant
noise, with sparse noise spread throughout parts of the image.

Our results confirm the high performance of deep learning meth-
ods in cell segmentation tasks as compared to traditional image
processing methods. Using the EVICAN dataset, we show that even
a relatively small dataset is sufficient to train an accuarate model. As
an predictor of cell morphology, count, type, division, and shape, cell
segmentation is a fundamentally important step in many biomedical
studies. We hope that our work will advance research and discus-
sions on multi-type cell segmentation and thus contribute towards
biomedical innnovation.

5 CONTRIBUTIONS
• Edward Vendrow: I processed EVICAN image and segmenta-
tion to prepare for training, and trained a U-net model. I also
wrote evaluation scripts for the EVICAN evaluation set. For
writing, I wrote the Introduction and Results and Analysis
sections, and contributed to the background section.

• Zixian Ma: For implementation, I compared different cell im-
age datasets, did some intial processing of the EVICAN data,
trained the U-net model with and without data augmenta-
tions, and evaluated the traditional Otsu thresholding method.
For writing, I was mainly in charge of the background and
methods sections.
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